
MikroTik Scripting

194

Summary
In this chapter, we had a comprehensive look at what variables are, why we need them
and how to use them.

We use variables for the temporary storage of data in our scripts. They can be
declared as local or global variables using the commands:

• :local <variable name>
• :global <variable name>

Data assigned to a variable may be any of the types described in chapter 4. Data can be
assigned at the time of variable creation using the ":local" and ":global" commands
as follows:

• :local <variable name> <data value>
• :global <variable name> <data value>

Local variables exist only for the lifetime of a script. Once the script has completed, they
no longer exist, and the data they held is no longer available.

Global variables are system-level variables that exist until they are explicitly cleared.
They may be declared in a script or on the CLI, and their data is available to other scripts
and CLI sessions. Note that global variables are only available to the RouterOS user who
created them. Global variables should only be declared within script global scopes, not
local scopes.

If a variable already exists, its value may be set using the command:

• :set <variable name> <data value>

Variables have the data type "nothing" if they are created with no value assigned or
have not yet been created. This can be tested using the ":typeof" command.

Variable names are best defined using a mix of letters or numbers. Non-alphanumeric
characters may also be used, but variable names must always be specified using speech
quotes in this scenario, i.e.:

• :local InterfaceName "ether1-WAN"
• :local "Interface_Name" "ether1-WAN"

The availability of a variable is determined by the current scope of a script. Two types of
scope are available:

• Global scope: this exists between the start and endpoints of a script and can
encompass other (local) scopes.

• Local scope(s): these exist between any pair of curly braces within a script. They
always exist within the script's global scope.

Scopes are hierarchical and may contain multiple child scopes.

Chapter 7 – If Statements

195

Chapter 7 – If Statements
One of the most powerful features of any scripting language is the ability to make
decisions based on conditions detected during a script's execution. Detecting
unexpected or changing conditions allows a script to adapt to its environment.

The RouterOS ":if" statement allows our scripts to test for various conditions and
take varying logical paths through our code. This allows the script to perform the most
appropriate actions based on detected conditions. It provides decision-making
capabilities for our code. For example, we might decide to bring up a second interface if
a WAN port is detected as being down. Or perhaps we might raise a log error if a remote
website or service is detected as unavailable.

We'll explore the power of ":if" statements in this chapter.

MikroTik Scripting

196

What Are If Statements? Why Do We Use Them?
Apart from the simplest of scripts, there are few occasions when the logical flow of our
code follows a linear path. There may be many decision points where we wish to inspect
varying conditions and take appropriate actions based on the state of the environment
detected.

"If" statements allow us to test conditions and make relevant decisions in our code to
ensure we achieve an appropriate outcome. By providing decision-making capabilities,
they add a degree of apparent "smartness" to our scripts. This enables them to handle
complex tasks and scenarios.

The basic format of an ":if" statement is shown below:

:if (<test for a condition>) do={
 <run commands if the condition is true >

}

An ":if" statement initially runs a test to see if a logical condition is true. If the
condition is true, it runs the commands in the code block between the curly braces in the
"do={ }" block.

If the test condition is false, the code block is ignored, and the code flow continues to
the code section beyond the curly braces of the ":if" statement.

Let's analyse a short example:

filename: ch7-01-basic-if.rsc

Print a greeting
:put "Hello, I hope you're well.";

Check if the time is after 6pm (get time in 21:46:04 format)
:local CurrentTime [:system clock get time];
:put "The current time is : $CurrentTime";

Say good evening if time is after 18:00
:if ($CurrentTime > 18:00) do={
 :put "Good evening!";
}

Say goodbye
:put "Thanks for visiting, bye!";

This rather polite script prints a series of greetings and will additionally wish you a "good
evening" if it detects the local time of the MikroTik is past 18:00. Let's analyse it in detail:

• We start with a simple "Hello, I hope you're well" greeting printed to the
console

Chapter 7 – If Statements

197

• Next, we read the current local time of the MikroTik using the [:system clock
get time] command. This value is assigned to a variable called "CurrentTime"

• We then execute our ":if" statement, which checks to see if the current time is
after 1800 hours:

o Note that the test condition used is "($CurrentTime > 18:00)". We're
testing if the current time is after 1800 hours. One important point to note is
that the data type we're using here is the "time" data type. If this were a
simple integer or string type, this comparison would not work (See chapter 4
for a detailed discussion of data types). Note that this condition is only true
between the hours of 18:01 and 23:59. Outside of these hours, the test
condition result is false.

o If the condition is found to be true, an additional statement is printed that
says "Good Evening!" using the code in the "do={}" code block. Note that
this code block could contain several commands if required. It is also a local
scope, which is worth remembering when dealing with local variables.

• Finally, we printed the message: "Thanks for visiting, bye!".
• Let's run this code at two different times of day to see how the output varies. Here

is the code run after 18:00 in the evening:

[admin@Router] > /import ch7-01-basic-if.rsc
Hello, I hope you're well.
The current time is : 22:17:42
Good evening!
Thanks for visiting, bye!

Script file loaded and executed successfully
[admin@Router] >

Now, let's run the same code the next morning and inspect the output again:

[admin@Router] > /import ch7-01-basic-if.rsc
Hello, I hope you're well.
The current time is : 06:57:31
Thanks for visiting, bye!

Script file loaded and executed successfully
[admin@Router] >

Notice that we get a similar output in both instances, but when the code is run in the
evening, we see an additional "Good Evening!" greeting. Note that the code run before
and after the ":if" statement is the same in both scenarios. The additional code for the
evening time detection only runs after 18:00.

This code could be further improved to detect whether the time is morning,
afternoon or evening and produce a variety of appropriate greetings.

MikroTik Scripting

198

Although this is a trivial example, you can hopefully see how we can implement powerful
decision logic in our code using ":if" statements. We'd use this decision-making
capability in real-world examples to take various actions based on detected network
conditions.

There are two types of ":if" statement that we can use in our code:

• A basic ":if" statement: this includes a single block of conditional code that is
executed if a condition is found to be true (like the previous examples we
reviewed)

• An ":if-else" statement: this includes two blocks of conditional code: one is
executed if the test condition is true, and the other is executed if it is false.

We'll look at both types in detail next.

Basic "If" Statement
Let's look at a more useful example of how we might use an ":if" statement than those
we've tried so far. Remember that the basic format of an ":if" statement is as follows:

 :if (<test for a condition>) do={
 <run commands if the condition is true >
 }

We'll use this format in our next example to test several conditions and print appropriate
messages based on those tests. We'll monitor the ability of our MikroTik to reach a
destination on the Internet using a ping test. Depending on the result, we'll log an
appropriate message to indicate the health of our Internet connection.

The example below uses the "/ping" RouterOS command to ping a destination IP
address. We'll force the ping traffic across the MikroTik's WAN link and send 10 pings. If
we get a response to all 10 pings, we'll assume that our Internet connection is in good
shape. We'll assume the Internet is down if we get no ping responses. If we get a few
ping responses, we'll assume that the Internet connection is degraded.

In reality, this isn’t a very robust method of assessing the state of our Internet
connection. It's useful as a rudimentary test and demonstrates a useful application of
using the ":if" statement. For a more robust, real-world test, we'd likely also test the
availability of multiple destinations on the Internet and perhaps check the status of our
WAN interface.

Chapter 7 – If Statements

199

filename: ch7-02-basic-if.rsc

Create a variable for the WAN interface name
:local WanInterface "ether1-WAN";

Create a variable for the number of pings we'd like to send
:local PingCount 10;

Create a variable for the destination on the Internet to ping
:local DestinationAddress 8.8.8.8;

Let's try a ping to the Internet across the WAN interface
:local WanPingCount [/ping $DestinationAddress interface=$WanInterface \
 count=$PingCount];

Let's log the result of our Internet connection test
if ($WanPingCount = $PingCount) do={
 :log info "The Internet is up.";
}

if ($WanPingCount = 0) do={
 :log error "The Internet is down.";

}

if (($WanPingCount < $PingCount) and ($WanPingCount > 0)) do={
 :log warning "The Internet connection may be degraded. (Ping \
 result: $WanPingCount/$PingCount)";
}

Here is a brief analysis of the script:

• We start by setting a series of local variables:

o WanInterface: name of the MikroTik WAN interface.
o PingCount: number of pings we'll attempt during our test.
o DestinationAddress: the address our test will ping.

• Next, we assign the ping test result across the WAN link to the local variable
WanPingCount.The result of the "/ping" command is the number of successful
ping responses received.

• We then execute commands based on one of three ":if" statements:

o If we get a response to all pings (i.e. 100% success), then we log an
informational message to say the Internet is up.

o If we get no responses to our pings, we log an error message that the Internet
is down.

o If we get fewer responses than the number of pings attempted but still get
more than zero responses, then we log a warning message that the Internet
connection may be degraded.

